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 ABSTRACT: This systematic review highlights the pivotal functions of ginsenosides 

in cancer treatment through miRNA regulation. Ginsenosides, bioactive herbal 

compounds derived from ginseng, exhibit significant anti-cancer properties through 

mechanisms including inhibition of cell proliferation, epithelial-to-mesenchymal 

transition (EMT), metastasis, invasion, and induction of autophagy and apoptosis. 

MicroRNAs (miRNAs), small non-coding RNAs, play critical roles in gene regulation 

and have emerged as potential diagnostic, prognostic, and therapeutic targets in 

various cancers. Ginsenosides influence miRNA expression, underexpressing 

oncogenic miRNAs and overexpressing tumor suppressor miRNAs, thereby exerting 

their anti-cancer effects. The literature review covered studies from 2011 to 2021 

sourced from PubMed, Scopus, Cochrane Library, and Web of Science, adhering to 

the PRISMA guidelines. Eligible studies were screened, resulting in the selection of 26 

preclinical studies. These studies demonstrate that ginsenosides modulate the 

expression of various miRNAs, contributing to anti-tumorigenic activities across 

different cancer types, including glioma, non-small cell lung cancer, breast cancer, 

acute leukemia, hepatocellular carcinoma, ovarian cancer, medulloblastoma, prostate 

cancer, liver cancer, oral squamous cell carcinoma, retinoblastoma, and gallbladder 

cancer. By influencing miRNA pathways, ginsenosides can inhibit tumor growth, 

migration, invasion, and induce apoptosis, highlighting their therapeutic potential in 

oncology. 

Keywords: Ginsenosides; microRNAs; anti-cancer; epithelial-to-mesenchymal 

transition; apoptosis; autophagy; metastasis 

1. Introduction  

Although progress in the current treatment has 

reduced the mortality of different cancers but 

metastasis and toxicity issues remain the main 

reason for failure in cancer treatment. Therefore, 

an effective, low-toxicity agent is required to 
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improve the survival rate (Wang et al., 2016a; 

Zhang et al., 2008).  

Ginsenosides are herbal compounds extracted 

from ginseng, with medicinal value, which is 

categorized into different groups, such as 

ginsenoside Rh2, ginsenoside Rb1, ginsenoside 

Rd, ginsenoside 20(S)-Rg3, and ginsenoside Rg3 

(Sun et al., 2010) that have been reported to have 

anti-tumorigenesis activity either through 

inhibition of the cell migration, proliferation, and 

epithelial mesenchymal transition (EMT) or 

induction of autophagy and apoptosis in tumor 

cells (Chen & Qiu, 2015; Li et al., 2019; Liu et al., 

2017; Wang et al., 2016a; Wen et al., 2015; Wu et 

al., 2011; Zhou et al., 2018). Numerous studies 

have reported the anti-tumor properties of 

ginsenosides in different cancers, including 

glioma (Wu et al., 2011), non-small cell lung 

cancer (NSCLC) (An et al., 2013), breast cancer 

(Wen et al., 2015), acute leukemia (Wang & 

Wang, 2015), hepatocellular carcinoma (HCC) 

(Chen & Qiu, 2015), ovarian cancer (Li et al., 

2017), medulloblastoma (Y. Chen et al., 2018), 

prostate cancer (Gao & Zheng, 2018), liver cancer 

(W. Chen et al., 2018), oral squamous cell 

carcinoma (OSCC) (Cheng & Xing, 2019), 

retinoblastoma (Li et al., 2019), gallbladder 

cancer (Wu et al., 2019b). Expression of 

microRNAs (miRNAs, miRs) could be altered by 

ginsenosides in different types of cancer (An et 

al., 2013).  

miRNAs are a group of small noncoding RNAs 
that regulate gene expression in a post-
transcriptional manner. These regulators inhibit 
the expression of a large number of target genes 
and related biological processes by 
complementary binding to 3'-UTR, 5'-UTR, or 
coding regions (Mishan MA et al., 2021). miRNAs 
have been reported as potential diagnostic, 
prognostic, and therapeutic targets in a variety of 
diseases These noncoding RNAs, function as 
either oncogene or tumor suppressor 
contributing to induction, proliferation, 
migration, metastasis, and promote 
tumorigenesis (Akbari Korhkheyli V et al., 2021; 
Ghalehnoei H et al., 2020; Mishan et al., 2020). 
The aim of this study was to discuss research 
findings on the effects of ginsenosides on 
miRNAs to further elucidate their anti-tumor 
functions as a therapeutic of future. 
 

2. MATERIALS AND METHODS 

A literature review was done on the eligible 
papers published in PubMed, Scopus, Cochrane 
Library, and Web of Science (ISI) databases. The 
following keywords were used: (cancer OR 
malignancy OR neoplasm OR tumor OR 
malignant OR tumour OR neoplasia OR 
cancerous), (non-coding RNA OR noncoding 
RNA OR ncRNA OR miRNA OR miR- OR 
microRNA), and (ginsenoside OR panaxosides 
OR Panax). Subsequently, the PRISMA statement 
is used for describing the obtained data (Liberati 
et al., 2009). 

Inclusion and Exclusion criteria 

Two authors independently screened titles for 

duplicates. Afterward, reports that met the initial 

criteria were screened for the eligibility of titles 

and abstracts. In this study, inclusion criteria 

were in vivo and in vitro English studies which 

were published from 2011 to 2021.  At the final 

stage, identified eligible items were compared 

and the unnecessary cases were excluded. For 

each eligible study, relevant information and 

data were extracted from full texts. Also, the 

exclusion criteria were unnecessary articles, book 

chapters, review articles, duplicative studies, 

non-English articles, letters, conference papers, 

editorials, short surveys, and meeting abstracts. 

3. RESULTS AND DISCUSSION 

Literature searching was performed according to 
the related keywords; 150 articles were 
identified. Eventually, out of all investigations, 26 
relevant preclinical studies were chosen 
according to the study topic (Figure 1 and Table 
1). 
 
In six studies, the synergic inhibitory effect of 
ginsenoside as a potential anti-cancer chemical 
drug was reported as follows (Figure 2). In the 
first study, miR-31 was downregulated in 
medulloblastoma following the treatment by 
combining 30 µM ginsenoside Rh2 with miR-31 
mimic (Y. Chen et al., 2018). In the second study, 
expression of miR-491 was increased by the 
treatment with 40 μg/ml ginsenoside Rh2 and 
miR-491 mimic combination in lung cancer (Chen 
et al., 2019). In the third study, a treatment by 
combining 75 μg/ml ginsenoside Rg3 with miR-
221 mimic in OSCC was performed (Cheng & 
Xing, 2019). Moreover, a treatment by combining 
ginsenoside 20(S)-Rg3 at the dosage of 80 μg/mL 
and 40 μg/mL with 532-3p mimic (Zhou et al., 
2018), and concentration of 100 μmol/L with miR-
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4425 mimics in SKOV3 and 3AO ovarian cancer 
cell lines  (Jiaojiao Lu et al., 2020). And finally, cell 
viability and migration were blocked in 
glioblastoma in vitro model treated with 100µM 
ginsenoside Rd with miR-144-5p mimic (G.-M. 
Liu et al., 2020). 
 

 
 
 
 
 
 

 

Figure 1. PRISMA Flow diagram of the study selection process 
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Table 1. Main features of the studies included in this review 

 
Ref. 

 
Year 

 
Type of study 

 
miRNA 

 
Ginsenosides effect 

on miRNAs 

 
Type of cancer 

 
Sample 

  
Mechanism of 

action 

 
Treatment 

or Effective 
dose 

(Wu et 
al., 2011) 

2011 In vitro miR-128 Upregulation Glioma Human 
U251 Cell 

line 

Inhibition of cell 
proliferation, 

Induction of cell 
apoptosis 

12μg/mL 

(An et 
al., 2013) 

2013 In vitro ebv-miR-
BHRF1-1, let-7d, 
miR-361-3p, let-

7i, miR-3648, 
miR-1207-5p, 

miR-3651, 
miR-1225-5p, 

miR-3653, 
miR-1227, miR-

3656, 
miR-1268, miR-

3663-3p, 
miR-1290, miR-

3665, 
miR-130b, miR-

4270, 
miR-135a, miR-

4281, 
miR-148a, miR-
4284, miR-150*, 

miR-483-3p, 
miR-186, miR-

574-5p  
miR-188-5p, 
miR-590-5p, 

miR-18b, miR-
630, 

Upregulation (ebv-
miR-BHRF1-1, let-7d, 

miR-361-3p, 
let-7i, miR-3648, 

miR-1207-5p, miR-
3651, 

miR-1225-5p, miR-
3653, 

miR-1227, miR-3656, 
miR-1268, miR-3663-

3p, 
miR-1290, miR-3665, 
miR-130b, miR-4270, 
miR-135a, miR-4281, 
miR-148a, miR-4284, 
miR-150*, miR-483-

3p, miR-186, miR-574-
5p, miR-188-5p, miR-

590-5p, 
miR-18b, miR-630, 
miR-191*, miR-664, 
miR-1915, miR-767-

3p, 
miR-196b, miR-939, 

miR-2116*, hsv1-miR-
H18, 

miR-296-5p, hsv1-
miR-H20, 

Non-small cell 
lung cancer 

A549 
Cell line 

Inhibition of cell 
proliferation, 

40 μg/ml 
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miR-191*, miR-
664, 

miR-1915, miR-
767-3p, 

miR-196b, miR-
939, 

miR-2116*, hsv1-
miR-H18, 

miR-296-5p, 
hsv1-miR-H20, 
miR-3180-5p, 
hsv1-miR-H6, 

miR-3195, hsv1-
miR-K12-9*, let-

7e, miR-27b, 
miR-100, miR-

28-5p, 
miR-101, miR-

30a, 
miR-125b, miR-

31, 
miR-151-3p, 

miR-31*, 
miR-193a-3p, 

miR-3127, 
miR-193b, miR-

365, 
miR-21, miR-

424, 
miR-21*, miR-

4252, 
miR-221, miR-

486-5p, 
miR-224, miR-

550a*, 
miR-23b, miR-

98) 

miR-3180-5p, hsv1-
miR-H6, 

miR-3195, hsv1-miR-
K12-9*), 

Downregulation (let-
7e, miR-27b, 

miR-100, miR-28-5p, 
miR-101, miR-30a, 
miR-125b, miR-31, 

miR-151-3p, miR-31*, 
miR-193a-3p, miR-

3127, miR-193b, miR-
365, 

miR-21, miR-424, 
miR-21*, miR-4252, 

miR-221, miR-486-5p, 
miR-224, miR-550a*, 

miR-23b, miR-98) 



33 
 

(Wen et 
al., 2015) 

2015 In vitro miR-29a, miR-
222 and miR-34a 

Downregulation 
(miR-29a, miR-222 

and miR-34a) 

Breast cancer MCF-7, 
MCF-7/Adr, 
MCF-7/Doc 

Inhibition of cell 
proliferation, 

Induction of cell 
apoptosis 

MCF-7 cells 
with G-Rh2 

(40 μM/l) 
treatment; 

MCF-7/Adr 
cells with G-

Rh2 (80 
μM/l) 

treatment 
and MCF-
7/Doc cells 
with G-Rh2 

(80 μM/l) 
(Li et al., 

2015) 
2015 In vitro 

In vivo 
 

miR-497 Upregulation Glioblastoma Human 
A172 Cell 

line 
 

Inhibition of 
angiogenesi, 

cancer growth 
and invasion 

0.01, 0.1, and 
1 mg per ml 

(In vitro), 
1 mg per kg 
body weight 

(In vivo) 

(Wang & 
Wang, 
2015) 

2015 In vivo 
In vitro 

miR-21 Upregulation Acute leukemia Kasumi-1 
and U-937, 

NOD-SCID-
gamma 
mouse 

Induction of cell 
apoptosis, 

prolonged the 
survival of mice 

0.01, 0.1, and 
1 mg per ml 

(In 
vitro),1mg 

per kg body 
weight (In 

vivo) 
(Chen & 

Qiu, 
2015) 

2015 In vivo 
In vitro 

miR-491 Upregulation Hepatocellular 
carcinoma 

HepG2, 
SMMC-7721, 
NOD/SCID 

mice 

Inhibition of cell 
proliferation and 

tumor growth 
 

20 μM (In 
vitro) 

1 mg per kg 
body weight 

(In vivo) 

(Wang et 
al., 

2016b) 

2016 In vitro 
In vivo 

miR-18a Downregulation Breast cancer 4T1 cell line 
and human 
MDA-MB-

231 Cell line, 
BALB/c 

mice 

Inhibition of cell 
migration and 

invasion 

50, 100, 150 
μM (In 
vitro) 

50 mg per kg 
body weight 

(In vivo) 
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(Li et al., 
2017) 

2017 In vitro miR-145 Upregulation Ovarian cancer Human 
SKOV3 and 

3AO Cell 
line 

Inhibition of  
EMT, cell 

migration, and 
invasion 

80 μg/ ml 
(for SKOV3) 
or 160 μg/ml 

(for 3AO) 
(Liu et 

al., 2017) 
2017 In vitro miR-25 Downregulation Ovarian cancer Human 

SKOV3 and 
3AO Cell 

line 

Inhibition of  
hypoxia-induced 

EMT 

160 μg/ml 

(Zhou et 
al., 2018) 

2018 In vitro miR-3163, miR-
664a-5p, miR-
6717-5p, miR-
4329, miR-603, 

miR-324-5p, 
miR-1283, miR-

532-3p, miR-33a-
3p, miR-519a-

5p,miR-486-3p, 
miR-4634, miR-

1273e, miR-
4532532-3p 

mimic, miR-
7156-3p, miR- 
6730-3p, miR-
2682-3p, miR-
7843-3p, miR- 
195-3p, and 
miR-4425 

Upregulation (miR-
3163, miR-664a-5p, 
miR-6717-5p, miR-

4329, miR-603, miR-
324-5p, miR-1283, 

miR-532-3p, miR-33a-
3p, miR-519a-5p, and 

miR-486-3p), 
Downregulation( 

miR-4634, miR-1273e, 
miR-4532, miR-7156-

3p, miR- 6730-3p, 
miR-2682-3p, miR-

7843-3p, miR- 195-3p, 
miR-4425) 

 

Ovarian cancer Human 
SKOV3 and 
A2780 Cell 

line 

Inhibition of 
Warburg effect 

80 μg/mL 
(for SKOV3) 

and 40 
μg/mL (for 

A2780), 
20(S)-Rg3+ 
miR-532-3p 

mimic 

(Zheng 
et al., 
2018) 

2018 In vitro miR-324-5p Upregulation Ovarian cancer Human 
SKOV3 and 
A2780 Cell 

line 

Inhibition of 
Warburg effect, 
Inhibition of cell 

proliferation 

80 μg/mL 
(for SKOV3 
cells) or 40 
μg/mL (for 
A2780 cells) 

(Y. Chen 
et al., 
2018) 

2018 In vitro miR-31 Downregulation Medulloblastoma Daoy cell 
line 

Inhibition of cell 
proliferation, 

migration. 

30 μM + 
miR-31 
mimic 
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Induction of cell 
apoptosis 

(Gao & 
Zheng, 
2018) 

2018 In vitro miR-4295 Downregulation Prostate cancer PC3 and 
DU145 PC 
cell lines 

Inhibition of cell 
growth and cell 

proliferation 

0.01, 0.1 and 
1 mg/ 
mL. 

(W. Chen 
et al., 
2018) 

2018 In vitro 
In vivo 

miR-200b-5p, 
miR-224-3p, 

miR-146a-5p, 
miR-26b-3p and 

miR-29a-5p 

Upregulation (miR-
200b-5p, miR-224-3p 

and miR-146a-5p) 
Downregulation 
(miR-26b-3p and 

miR-29a-5p) 

Liver cancer HepG2 
Huh7, and 

SMMC-7721, 
athymic 

nude mice 

Inhibition of cell 
proliferation, 

colony 
formation , cell 

growth,  
Induction of cell 

apoptosis 

20 μg/ml (In 
vitro) 

1 mg per kg 
body weight 

(In vivo) 

(Cheng 
& Xing, 

2019) 

2019 In vitro 
In vitro 

 

miR-221 Downregulation Oral squamous 
carcinoma 

SCC-9 and 
HSC-5 cell 

line, BALB/c 
nude mice 

 

Inhibition of cell 
proliferation, 

EMT and 
viability, 

promotion of 
cell apoptosis 

75 μg/ml (In 
vitro), 

10 mg per kg 
body weight 

(In vivo) 
Rg3+miR-
221mimic 

(Li et al., 
2019) 

2019 In vitro miR-638 Downregulation Retinoblastoma Human RB 
Y79 and 

RBL-13 cell 
lines 

Inhibition of cell 
proliferation, 
promotion of 
cell apoptosis 

and autophagy 

30 μM 

(Wu et 
al., 

2019a) 

2019 In vitro 
In vivo 

 

miR-181b Downregulation Gallbladder 
cancer 

GBC-SD cell 
line, 

BALB/c 
nude mice 

Inhibition of cell 
proliferation 
autophagy 

100 μM (In 
vitro) 

20 mg per kg 
body 

weight(in 
vivo) 

(Chen et 
al., 2019) 

2019 In vitro mir-491 Upregulation Lung cancer A549 and 
H1299 

Inhibition of cell 
migration 

40µ g/ml+  
mir-491 
mimic 

Lu et al. 
(2019) 

2019 In vitro miR-603 Upregulation Ovarian cancer SKOV3 and  
A2780 

Inhibition of cell 
growth, 

migration and 
invasion 

80 μg/ml 
(for SKOV3) 
or 40 μg/ml 
(for A2780) 
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Lu et al. 
(2020)  

2020 In vitro 
 

miR-4425 Downregulation Ovarian cancer SKOV3 and 
3AO 

Inhibition of  
proliferation, 
migration and 

invasion 

100 μmol/L 
+ miR-4425 

mimics 

Liu et al. 
(2020)  

2020 In vivo 
 

miR-21 Downregulation Gastric cancer Atp4a- /- 
mouse 

Inhibition of  
proliferation, 

and promotion 
of apoptosis 

 

5 and 10 mg 
per kg body 

weight 

Li et al. 

(2020)  

2020 In vitro miR-21 Downregulation Hepatocellular 

carcinoma 

MHCC97H 

and BEL7402 

Inhibition of cell 

growth and 

invasion 

and  

promotion of 

apoptosis 

20, 40, 

and 80 μM 

Liu et al.  

(2020)  

2020 In vitro 

In vivo 

miR-144-5p Upregulation Glioblastoma U251 and 

U87 

Inhibition of 

proliferation and 

migration 

100µM + miR-

144-5p 

mimic (In 

vitro) 

60 g per kg 

body weight 

(In vivo) 

(W. Z. 

Zhou et 

al., 2020) 

2020 In vitro miR-192 Downregulation Non-small cell 

lung cancer 

H125 cell line Inhibition of cell 

proliferation, 

invasion, and 

migration and 

promotion of cell 

apoptosis 

hyaluronic 

acid HA100 

μg/mL Rg3 

nanoparticles 

(J. Lu et 

al., 2020a) 

2020 In vitro miR-519a-5p Upregulation Ovarian cancer SKOV3 and 

A2780 cell 

line 

Inhibition of 

Warburg effect 

80 μg/mL (for 

SKOV3 cells) 

or 40 μg/mL 

(for A2780 

cells) 

(J. Lu et 

al., 2020a) 

2021 In vitro miR-424-5p Upregulation Breast cancer MCF-7cell 

line 

promotion of cell 

apoptosis 

20 and 50 µM 



37 
 

In two studies, effects of ginsenoside treatment in 
the microRNA expression profile of NSCLC 
investigated. In these studies, the expressions of 
ebv-miR-BHRF1-1, miR-2116*, miR-361-3p , let-
7d, miR-3648, miR-1225-5p, miR-1207-5p, miR-
130b, miR-3651, let-7i, miR-3653, miR-1268, miR-
1227, miR-3656, miR-3665, miR-3663-3p, miR-
1290, miR-135a, miR-4270, miR-4281, miR-4284, 
miR-148a, miR-186, miR-150*,  miR-483-3p, miR-
188-5p, miR-574-5p, miR-18b, miR-590-5p, miR-
191*, miR-630, miR-767-3p, miR-664, miR-1915, 
miR-939, miR-196b, hsv1-miR-H18, hsv1-miR-
H20, miR-296-5p, hsv1-miR-H6, miR-3180-5p, 
hsv1-miR-K12-9*, and miR-3195 (An et al., 2013) 
were increased following the treatment by 40 
μg/ml ginsenoside Rh2 while let-7e, miR-27b, 
miR-28-5p, miR-100, miR-125b, miR-101, miR-
30a, miR-151-3p, miR-31, miR-193a-3p, miR-31*, 
miR-193b, miR-3127, miR-365, miR-21*,  miR-21, 
miR-424, miR-221, miR-4252, miR-224, miR-486-
5p, miR-550a*, miR-98, and miR-23b were 
downregulated by the same amount of 
ginsenoside Rh2 treatment (An et al., 2013). 
Moreover, gelatin and hyaluronic acid nanoparticles coated 

with the 100 μg/ml ginsenoside monomer were prepared to 

explore the miR-192 expression. The results revealed that 

miR-192 expression negatively influenced by 
ginsenoside Rg3 nanoparticles in NSCLC cells 
(W. Zhou et al., 2020). 
Notably, miR-21 expression was decreased in 
Atp4a- /- mouse model of gastric cancer treated 
with 5 and 10 mg/kg body weight ginsenoside 
Rg3 (W. Liu et al., 2020). While, it was found that 
miR-21 expression was significantly increased in 
acute leukemia cells treated with 0.01, 0.1, and 1 
mg/ml ginsenoside Rh2. Also, ginsenoside Rh2 
may lead to apoptosis through suppression of 
anti-apoptotic protein Bcl-2. Besides, miR-21 
upregulation prolonged the survival rate in the 
animal model of acute leukemia (Wang & Wang, 
2015), while miR-21 was downregulated in HCC 
treated by 20, 40, and 80 μM of ginsenoside (Li et 
al., 2020). Similarly, miR-21 expression was 
decreased by 40 μg/ml ginsenoside in NSCLC 
(An et al., 2013). In an in vitro study, miR-638 
downregulated following treatment with 30 μM 
ginsenoside Rh2 in RB Y79 and RBL-13 cell lines. 
Also, ginsenoside treatment in retinoblastoma 
cell lines was shown to promote autophagy and 
apoptosis while suppressed cell proliferation 
through miR-638 downregulation (Li et al., 2019). 
In an animal model of breast cancer, miR-18a 
downregulated in 4T1 cell-inoculated mice 
treated with ginsenoside Rd at the final 
concentration of 50 mg/kg body weight (Wang et 
al., 2016a). Furthermore, miR-18a significantly 

decreased in breast cancer cell lines treated with 
50, 100, 150 μM  ginsenoside Rd. Also, the miR-
34a, miR-222, and miR-29a expression were 
significantly lower in MCF-7 cells treated with 40 
μM/l ginsenoside (Wang et al., 2016a). 
 
In addition, miR-29a, miR-222, and miR-34a 
expression in Adriacin (Adr) and Docetaxel (Doc) 
resistant cells treated with ginsenoside Rh2 were 
analyzed. Decreased expression of miR-34a, miR-
222, and miR-29a has been observed in MCF-
7/Adr and MCF-7/Doc cells after ginsenoside 
treatment at the dose of 80 μM/l (Wen et al., 
2015). Also, miR-145, miR-324-5p, and miR-519a-
5p found to be upregulated at a dose of 80 μg/mL 
and 40 μg/mL for SKOV3 and A2780 cell lines 
respectively in ovarian cancer (Li et al., 2017; J. Lu 
et al., 2020b; Zheng et al., 2018). Similarly, miR-
603 found to be upregulated at the same dosage 
in ovarian cancer cell lines treated by ginsenoside 
Rg3 (Lu et al., 2019). While, miR-25 expression 
was decreased in ovarian cancer cell lines treated 
by 160 μg/ml ginsenoside Rb1 (Liu et al., 2017). 
Notably, miR-128 expression was increased after 
ginsenoside Rh2 intervention at the dose of 
12μg/mL in human glioma U251 Cell line (Wu et 
al., 2011) while miR-497 was increased dose-
dependently by 0.01, 0.1, 1 mg/ml ginsenoside 
Rh2 treatment in cultured A172 cells (Li et al., 
2016). 
Ginsenoside Rh2 has also resulted in an increased 
in miR-146a-5p, miR-224-3p, and miR-200b-5p 
expression while reduced miR-26b-3p and 
miR-29a-5p expression level in liver cancer in 
vitro and in vivo (W. Chen et al., 2018).To further 
study the effects of ginsenoside on the HCC, 
NOD/SCID mice and HCC cell lines were treated 
with 1 mg/kg body weight and 20 μM 
ginsenoside respectively. This study indicated 
that ginsenoside treatment led to upregulation of 
miR-491 and prevention of proliferation and 
tumor cell growth in HCC treated cells (Chen & 
Qiu, 2015). In in vitro, GBC-SD cell line, 
ginsenoside Rg3 (100 μM), induced the inhibition 
of autophagy and proliferation by 
downregulation of miR-181b. Similarly, in the 
xenograft model of the gallbladder cancer, 
ginsenoside Rg3 (20 mg/kg body weight) 
intervention has caused the same response (Wu 
et al., 2019b).  
Moreover, ginsenoside Rh2 dose-dependently 
(0.01, 0.1, 1 mg/dl), in a prostate cancer cell line 
(PC3 and DU145), did not affect cell apoptosis 
but induced inhibition of cell proliferation and 
cell growth through downregulation of miR-4295 
(Gao & Zheng, 2018).   
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Inhibition of autophagy and proliferation are 
important functions proposed for ginsenoside. It 
was demonstrated that miR-181b contributes to 
gallbladder carcinoma progression by 
downregulating CREB3 regulatory factor 
(CREBRF) and subsequently enhancing cAMP 
responsive element binding protein 3 (CREB3) 
levels. These results indicated that ginsenoside 
Rg3 decreased autophagy and cell proliferation 
in gallbladder carcinoma cells through the miR-
181b/CREBRF/CREB3 signaling pathway (Wu et 
al., 2019b).  
Also, ginsenoside Rg3 was shown to block 
proliferation, viability, and TGF-β1- EMT in 
OSCC. Moreover, ginsenoside Rg3 treatment 
induced apoptosis via decreasing the miR-221 
expression and then increasing the expression of 
tumor inhibitor of metalloproteinases-3 (TIMP3) 
in OSCC cell lines. Also, it was demonstrated that 
phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (AKT) and MAPK/ERK signaling 
pathways could be suppressed by TIMP3 
upregulation in OSCC both in vivo and in vitro 
(Cheng & Xing, 2019). Also, ginsenoside Rg3 
treatment could suppress expression of miR-21, 
PI3K/AKT/mechanistic target of rapamycin 
(mTOR), Bcl-2, hexokinase-2 (HK2), and lactate 
dehydrogenase A (LDHA) in Atp4a- /- mouse 
model of gastric cancer which leads to inhibition 
of cell proliferation, and promotion of cell 
apoptosis (W. Liu et al., 2020). 
Ginsenoside Rg3 was shown to supress the 
negative regulation of  ATXN8OS long 
noncoding RNA (lncRNA) on miR-424-5p, 
leading to the suppression of  DACH1, EYA1,  
and CHRM3 oncogenes and enhance apoptosis of 
breast cancer cell lines such as MCF-7 (Kim et al., 
2021). Similarly, nanoparticles enveloped by Rg3 
have been shown to promote apoptosis and 
inhibit cell proliferation, invasion, and migration 
via miR-192 downregulation, thus elevating the 
phosphatase and tensin homolog (PTEN) levels 
(W. Zhou et al., 2020). 
Ginsenoside Rh2 has shown induction of 
apoptosis both in cell culture and animal model 
of glioma (Wu et al., 2011), breast cancer (Wen et 
al., 2015), acute Leukemia (Wang & Wang, 2015), 
medulloblastoma (Y. Chen et al., 2018), liver 
cancer (W. Chen et al., 2018), and retinoblastoma 
(Li et al., 2019). It was indicated that ginsenoside 
Rh2 could induce apoptosis in glioma cancer cells 
by caspase 3 activation as well as blocking 
transcription factor E2F3a through miR-128 
overexpression (Wu et al., 2011). Also, 
ginsenoside Rh2 could trigger apoptosis and 

increase chemotherapy sensitivity in breast 
cancer through pro-apoptotic Bax overexpression 
and downregulation of Bax-targeting miRNAs 
including miR-29a, miR-222, and miR-34a (Wen 
et al., 2015). Further investigation revealed that 
ginsenoside Rh2 enhances miR-21 level which 
leads to a longer survival time and induces 
inhibition of apoptosis-associated protein Bcl-2 
and induction of apoptosis in acute leukemia 
(Wang & Wang, 2015). Also, ginsenoside Rh2 
treatment was demonstrated to decrease Bcl-2, 
MMP-2, MMP-9, and cyclin-dependent kinase 1 
(CDK1) oncogene while overexpressing the 
cleaved caspase-9, caspase-3, and Bax expression, 
which results in the suppression of cell migration 
and proliferation. Furthermore, miR-31 is 
decreased in medulloblastoma cells treated with 
ginsenoside Rh2 and caused the induction of cell 
apoptosis and suppression of proliferation and 
migration by inactivating the Wnt/β-catein 
pathway (Y. Chen et al., 2018). In line with these 
results, upregulating miR-146a-5p meditated 
liver cancer colony formation, cell growth, and 
apoptosis through increasing the Bcl2 expression 
and decreasing the myeloid cell leukemia 1 
(MCL1) and nuclear factor (erythroid-derived 
2)-like 2 (Nrf2) expression in ginsenoside Rh2 
treated cells (W. Chen et al., 2018). Also, 
ginsenoside Rh2 has led to the same responses in 
the retinoblastoma by targeting miR-638 which 
leads to increasing the p53 expression and 
negative regulation of the PI3K/AKT/mTOR 
pathway. Furthermore, caspase-9 and caspase-3 
were activated via ginsenoside Rh2 through 
decreasing the Bcl2 and enhancing the Bax 
expression. Moreover, it was indicated that 
autophagy could be induced by ginsenoside Rh2 
following the Beclin-1, ATG7, LC3-II/I, 
upregulating and downregulating of p62 
expression, resulting in the inactivation of cell 
proliferation, promotion of cell apoptosis, and 
autophagy in retinoblastoma (Li et al., 2019).  
Ginsenoside Rh2 has been shown to promote 
anti-tumor activity through inhibition of 
migration, invasion, angiogenesis, Warburg 
effect, proliferation and, tumor growth, rather 
than from the induction of programmed cell 
death in prostate cancer (Gao & Zheng, 2018), 
ovarian cancer (Li et al., 2017; Liu et al., 2017; J. 
Lu et al., 2020b; Zheng et al., 2018; Zhou et al., 
2018), lung cancer (Chen et al., 2019), breast 
cancer (Wang et al., 2016a), hepatocellular 
carcinoma (Chen & Qiu, 2015), and glioblastoma 
(Li et al., 2016) 
Based on the aforementioned studies, 
ginsenoside Rh2 negatively controlled the cyclin-
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dependent kinase inhibitor 1A (CDKN1A), a 
miR-4295 target gene, at the post-transcriptional 
level, which results in the inhibition of prostate 
tumor growth (Gao & Zheng, 2018). 
Furthermore, ginsenoside Rh2 decreased MMP-9 
via mir-491 and hence inhibited proliferation and 
tumor migration in lung cancer (Chen et al., 
2019). In addition, it was shown that epidermal 
growth factor receptor (EGFR) signaling 
inactivation in ginsenoside Rh2 treated cells 
inhibits HCC cell proliferation and tumor growth 
by enhancing miR-491 expression (Chen & Qiu, 
2015). In addition, suppression of the PI3K/Akt 
pathway via negative regulation of miR-21 leads 
to inhibition of cell growth and invasion as well 
as, induction of apoptosis in HCC cells treated by 
ginsenoside (Li et al., 2020). Similarly, it was 
demonstrated that treatment of glioblastoma in 
vitro and in vivo with ginsenoside Rh2 reduced 
vascularization, growth, and invasion via miR-
497 upregulation which binds to the 3’UTR 
region of VEGF-A to suppress its expression (Li 
et al., 2016). In addition, ginsenoside Rd blocked 
migration and proliferation by miR-144-5p 
upregulation following the negative regulation of 
Toll-like receptor 2 (TLR2) in an in vitro and in 
vivo model of glioblastoma (G.-M. Liu et al., 
2020). Consistent with the previous findings, 
treatment of breast cancer with ginsenoside Rd 
in-activated migration and cell invasion in mice 
inoculated with 4T1 cells, as well as, in vitro 
model, by downregulating miR-18a following the 
Smad2 and TGFβ targeting (Wang et al., 2016a). 
In addition, overexpression of miR-25 induced 
EMT in ovarian cancer, while treatment with 
ginsenoside Rb1 reduced miR-25 expression, 
which leads to overexpression of E-cadherin 
transcriptional activator EP300 and results in 
attenuation of the migration and 
hypoxia-induced EMT (Li et al., 2017). 
Furthermore, it was indicated that ginsenoside 
20(S)-Rg3 could suppress migration, EMT, and 
invasion in ovarian cancer by negative regulation 
of DNMT3A (DNA Methyltransferase 3 Alpha) 
and thus increasing miR-145 expression 
following the FSCN1 (Fascin actin-bundling 
protein 1) inhibition (Li et al., 2017). 
Other suggested anti-cancer mechanism for 
ovarian cancer cells treated with ginsenoside 
20(S)-Rg3 include suppressing the Warburg 
effect through H19/miR-324-5p/PKM2 (pyruvate 
kinase M2) pathway (Zheng et al., 2018), 
DNMT3A/miR-532-3p/ HK2  pathway (Zhou et 
al., 2018), DNMT3A/miR-603/HK2 pathway (Lu 
et al., 2019), and DNMT3A/miR-519a-5p/HIF-1α 
(hypoxia-inducible factor-1α) pathway (J. Lu et 

al., 2020b). It was demonstrated that ginsenoside 
20(S)-Rg3 negatively regulates DNA methylation 
mediated by DNMT3A in the miR-603 by 
targeting HK2 which result in the Warburg effect 
inactivation (Lu et al., 2019). Besides, the 
Warburg effect is inhibited via miR-519a-5p as 
well as, miR-532-3p overexpression. Also, it was 
shown that miR-532-3p could target HK2 while 
miR-519a-5p could decrease the HK2 expression 
via HIF-1α inhibition which leads to Warburg 
effect inactivation (J. Lu et al., 2020b; Zhou et al., 
2018). Similarly, ginsenoside 20(S)-Rg3 has also 
resulted in decreased binding affinity of H19 to 
miR-324-5p, which increased inactivation of 
PKM2 by miR-324-5p and hence decreased the 
Warburg effect and ovarian cancer development 
(Zheng et al., 2018). 
 
4. CONCLUSIONS 
Taken together, numerous studies have shown 
the anti-neoplastic effects of ginsenosides in 
different types of cancer. Ginsenosides are able to 
induce cancer cell death either through 
suppression the cell proliferation, migration, 
angiogenesis, EMT, and invasion or promotion of 
cell apoptosis and autophagy, which miRNAs 
play a crucial function in the ginsenosides-
mediated anti-cancer properties. Ginsenosides 
can inhibit tumorigenesis via the 
underexpression of oncogenic miRNAs, as well 
as overexpression of tumor suppressor miRNAs, 
which has been highlighted in the present 
review. 
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